Античастицы - определение. Что такое Античастицы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Античастицы - определение

ПРОТИВОПОЛОЖНОСТЬ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Античастица; Аннигиляция и рождение пар; Аннигиляция и рождение; Antiparticle
Найдено результатов: 123
АНТИЧАСТИЦЫ         
элементарные частицы, имеющие те же массу, спин, время жизни и некоторые другие внутренние характеристики, что и их "двойники"-частицы, но отличающиеся от частиц знаками электрического заряда и магнитного момента, барионного заряда, лептонного заряда, странности и др. Все элементарные частицы, кроме абсолютно нейтральных, имеют свои античастицы. При столкновении частицы и античастицы происходит их аннигиляция.
Античастицы         

группа элементарных частиц (См. Элементарные частицы), имеющих те же значения масс и прочих физических характеристик, что и их "двойники" - частицы, но отличающихся от них знаком некоторых характеристик взаимодействий (например, электрического заряда, магнитного момента). Сами названия "частица" и "античастица" в известной мере условны: можно было бы называть антиэлектрон (положительно заряженный электрон) частицей, а электрон - античастицей. Однако атомы вещества в наблюдаемой нами части Вселенной содержат электроны именно с отрицательным зарядом, а протоны - с положительным. Поэтому для известных к началу 20-х гг. 20 в. элементарных частиц - электрона и протона (и позднее нейтрона) - было принято название "частица".

Вывод о существовании А. впервые был сделан в 1930 английским физиком П. Дираком. Он вывел уравнение, описывающее поведение электрона при скоростях, близких к скорости света. Как оказалось, это уравнение обладает важным свойством симметрии: описывая отрицательно заряженный электрон, оно в то же время с необходимостью приводило к выводу о существовании частицы с такой же, как у электрона, массой, но с противоположным знаком заряда - антиэлектрона. Согласно теории Дирака, столкновение частицы и А. должно приводить к аннигиляции, исчезновению этой пары частица-А., в результате чего рождаются две или более других частиц, например фотоны (см. Аннигиляция и рождение пар).

В 1932 антиэлектроны экспериментально обнаружил американский физик К. Андерсон. Он фотографировал ливни, образованные космическими лучами (См. Космические лучи) в камере Вильсона (см. Вильсона камера), помещенной в магнитное поле. Заряженная частица движется в магнитном поле по дуге окружности, причём частицы с зарядами разных знаков отклоняются полем в противоположные стороны. Наряду с хорошо известными тогда следами быстрых электронов Андерсон обнаружил на фотографиях совершенно такие же по внеш. виду следы положительно заряженных частиц той же массы. Они были названы Позитронами. Экспериментальное обнаружение позитрона явилось блестящим подтверждением теории Дирака. С этого времени начались поиски др. А.

В 1936 также в космических лучах была обнаружена ещё одна пара частица-А.: положительные и отрицательные Мюоны+μ-). В 1947 было установлено, что мюоны космических лучей возникают в результате распада несколько более тяжёлых частиц - пи-мезонов (См. Пи-мезоны) (π+ и π-).

В 1955 американские физики Э. Сегре, О. Чемберлен и другие зарегистрировали первые Антипротоны, полученные при рассеянии протонов очень высокой энергии (ускоренных на бэватроне Калифорнийского университета) на нуклонах (протонах и нейтронах) ядер мишени (мишенью служили ядра меди). Физическим процессом, в результате которого образовались антипротоны, было рождение пары протон-антипротон. Существование антипротонов наиболее ярко демонстрирует их последующая аннигиляция в столкновениях с протонами мишени. Именно благодаря аннигиляции были зарегистрированы открытые несколько позже Антинейтроны, не оставляющие следа в камере Вильсона из-за отсутствия у них электрического заряда. При аннигиляции как антипротона, так и антинейтрона возникает 4-5 π-мезонов, часть которых заряжена и оставляет в камере Вильсона характерный след. К настоящему времени экспериментально обнаружены и зарегистрированы на фотографиях почти все А.; не наблюдались только антиомега-частицы [сама омега-частица (Ω-) открыта в 1965] и некоторые А., соответствующие недавно открытым резонансным частицам (См. Резонансы). Однако нет никаких сомнений в их существовании.

Общие принципы квантовой теории поля (См. Квантовая теория поля) позволяют сделать ряд глубоких выводов о свойствах частиц и А. Прежде всего масса и Спин частицы должны совпадать с массой и спином А. (так же, как я их изотопические спины (См. Изотопический спин)). Далее, времена жизни частицы и её А. должны быть одинаковыми; в частности, стабильным частицам отвечают стабильные А. Одинаковыми по величине, но противоположными по знаку должны быть не только электрические заряды частицы и А., но и все другие величины, характеризующие их электрические (а следовательно, и магнитные) свойства, например магнитные моменты (См. Магнитный момент). Это относится и к электрически нейтральным частицам, таким, как нейтрон, Гипероны лямбда-ноль (Λ°) и сигма-ноль (Σ°). Их А. также электрически нейтральны, но обладают противоположными по знаку магнитными моментами. Противоположный знак имеют и другие Квантовые числа, которые приписываются частицам для описания закономерностей их взаимодействий: Барионный заряд, Лептонный заряд, Странность. Лишь несколько частиц истинно нейтральны: они не только не обладают никакими электрическими свойствами (их заряд и магнитный момент равны нулю), но и все остальные квантовые числа, отличающие частицу от А., у них равны нулю. Поэтому А. для истинно нейтральных частиц совпадают с самими частицами. Таковы фотон и нейтральные пи- и эта-мезоны (π° и η°).

До 1956 считалось, что имеется полная симметрия между частицами и А. Это означает, что если имеется какой-либо процесс между частицами, то должен существовать точно такой же процесс и между А. В 1956 обнаружено, что такая симметрия имеется только в сильных взаимодействиях (См. Сильные взаимодействия) (ядерных) и в электромагнитных взаимодействиях (См. Электромагнитные взаимодействия). В слабых взаимодействиях (См. Слабые взаимодействия), обусловливающих распады частиц, было открыто нарушение симметрии частица-А. В частности, геометрические характеристики распада частиц оказались отличными от характеристик распада соответствующих А.: если продукты распада частицы вылетают преимущественно в одну сторону, то продукты распада А. - в противоположную (см. рис. в ст. Элементарные частицы).

Из А. в принципе может быть построено "антивещество" точно таким же образом, как вещество из частиц. Однако возможность аннигиляции при встрече с частицами не позволяет А. сколько-нибудь длительное время существовать в веществе. А. могут долго "жить" только при условии полного отсутствия контакта с частицами вещества. Свидетельством наличия антивещества где-нибудь вблизи от известной нам части Вселенной было бы мощное аннигиляционное излучение, приходящее из области соприкосновения вещества и антивещества. Но пока астрофизике не известны данные, которые говорили бы о существовании во Вселенной областей, заполненных антивеществом.

Лит.: Форд К., Мир элементарных частиц, пер. с англ., М., 1965; Власов Н. А.. Антивещество, М., 1966 (библ. с. 180-184).

В. П. Павлов.

античастицы         
мн.
Элементарные частицы, имеющие те же физические характеристики, что и противопоставляемые им частицы, и отличающиеся от них знаком электрического заряда, магнитного момента или другой характеристики.
Античастицы         
Античасти́ца — частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, отличающаяся от неё знаками всех других характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды, барионное и лептонное квантовые числа).
античастица         
ж.
см. античастицы.
Аннигиляция и рождение пар         

частица-античастица. В физике термин "аннигиляция" [буквально означающий "исчезновение", "уничтожение" (лат. annihilatio, от ad - к и nihil - ничто)] принят для наименования процесса, в котором частица и отвечающая ей античастица (См. Античастицы) превращаются в электромагнитное излучение - фотоны или в другие частицы - кванты физического поля иной природы (см. Поля физические). Рождение пары - это обратный процесс, при котором в результате взаимодействия электромагнитных или других полей одновременно возникают частица и античастица. Например, при соударении электрона и его античастицы - позитрона - оба они могут исчезнуть, образовав два фотона (гамма-кванта); столкновение протона и антипротона может привести к их взаимоуничтожению, которое сопровождается одновременным появлением нескольких гораздо более лёгких частиц, квантов ядерного поля - пи-мезонов (См. Пи-мезоны); гамма-квант, если он обладает достаточно большой энергией, может, взаимодействуя с электрическим полем атомного ядра, породить пару электрон-позитрон (см. рис.). Таким образом, речь идёт не об уничтожении или самопроизвольном возникновении материи, а лишь о взаимопревращениях частиц. Эти взаимопревращения управляются фундаментальными законами сохранения, такими, как законы сохранения энергии и количества движения (импульса), момента количества движения, электрического заряда, числа лептонов (См. Лептоны), числа барионов (См. Барионы) и др. (см. Сохранения законы).

Возможность А. и р. п., как и само существование античастиц, была теоретически предсказана в 1930 английским физиком П. Дираком: они вытекали из развитой им теории электрона. В 1932 американский Физик К. Андерсон экспериментально доказал существование позитронов в космических лучах (См. Космические лучи). В 1933 Ирен и Фредерик Жолио-Кюри с помощью Вильсона камеры (См. Вильсона камера), помещенной в магнитное поле, наблюдали рождение электрон-позитронных пар гамма-квантами от радиоактивного источника. В том же году были надёжно зарегистрированы случаи аннигиляции пар электрон-позитрон.

Современное истолкование А. и р. п. даёт Квантовая теория поля.

Открытие А. и р. п. представляет глубокий интерес не только с точки зрения физики. Оно имеет важное философское значение. Впервые в истории естествознания было доказано, что не существует неделимых частиц - последних "кирпичей мироздания", из которых формируются все материальные объекты, как думали до 30-х гг. 20 в. Любая форма материи может превращаться в другие формы.

Аннигиляция пары электрон-позитрон. Попав в вещество, позитрон практически полностью теряет скорость из-за потерь энергии на ионизацию атомов. Поэтому непосредственно перед аннигиляцией позитрон можно считать покоящимся, т. е. позитрон и "обречённый на уничтожение" электрон находятся, скорее всего, в состоянии, в котором момент количества движения (относительного) этих частиц равен нулю. Дальнейшая судьба пары определяется взаимной ориентацией внутренних моментов количества движения частиц - их Спинов. Если спины электрона и позитрона (равные 1/2), направлены в противоположные стороны, т. е. их суммарный спин равен нулю, то в результате аннигиляции может образоваться лишь чётное число фотонов: запрет на образование нечётного числа фотонов связан с одним из законов сохранения, - законом сохранения так называемой зарядовой чётности (см. Зарядовое сопряжение). Однако вероятность аннигиляции с появлением четырёх и более фотонов ничтожно мала, и подавляющее большинство пар аннигилирует, образуя два фотона. Образовавшиеся фотоны летят в противоположные стороны, и каждый из них забирает половину первоначальной энергии системы электрон-позитрон, т. е. примерно энергию покоя электрона 2 = 0,51 Мэв (m - масса электрона, с - скорость света в вакууме). (Согласно теории относительности А. Эйнштейна, с массой М покоящейся частицы связана энергия E0 = Mc2, которая и называется энергией покоя.)

Если же перед аннигиляцией спины электрона и позитрона оказываются параллельными, так что их суммарный спин равен 1, то возможно лишь образование нечётного числа, а практически - трёх фотонов (аннигиляция свободных электрона и позитрона с излучением одного фотона запрещена законом сохранения импульса). Трёхфотонная аннигиляция происходит гораздо реже, чем двухфотонная: в среднем лишь два-три из каждой тысячи попавших в вещество позитронов аннигилируют в три фотона.

Однако небольшой доле позитронов, "удаётся" аннигилировать, сохранив ещё достаточно высокую скорость. При этом угол разлёта фотонов зависит от этой скорости. При больших энергиях аннигилирующих позитронов возникающие фотоны испускаются преимущественно вперед и назад по направлению движения позитрона. Фотон, летящий вперёд, забирает почти всю энергию позитрона, на долю же фотона, летящего назад, остаётся только энергия, равная примерно энергии покоя электрона 2. Таким образом, при прохождении быстрых позитронов через вещество образуется пучок высокоэнергетических гамма-квантов, летящих в одну сторону. Этим иногда пользуются физики-экспериментаторы для получения монохроматического пучка фотонов сочень большой энергией.

В веществе позитроны "живут" очень недолго: в типичных твёрдых телах за время около 10-10 сек - за ничтожный с обычной точки зрения промежуток времени - процесс аннигиляции уничтожает больше двух третей всех оказавшихся в веществе позитронов. [Позитрон - стабильная частица (он ни на что не распадается) и в вакууме может существовать бесконечно долго.]

Часто, особенно в газах, аннигиляция идёт через промежуточный этап - образование кратковременно живущей системы, позитрония, т. е. связанного состояния электрона и позитрона.

Рождение пар электрон-позитрон. Для прогресса, обратного аннигиляции (рождения фотоном электрон-позитронной пары), необходимо наличие внешнего электромагнитного поля (или второго фотона), так как, согласно законам сохранения энергии и импульса, "одинокий" фотон не может превратиться в пару частица-античастица. Обычно образование пар электрон-позитрон фотоном происходит в кулоновском поле атомного ядра (или электрона). Для осуществления такой реакции энергия фотона должна быть не меньше суммы масс покоя электрона и позитрона, т. е. 2mc2 = 1,02 Мэв. Вероятность рождения пары в кулоновском поле ядра пропорциональна квадрату заряда ядра (или атомного номера), Z2; она быстро растет с увеличением энергии гамма-кванта и при очень больших энергиях достигает некоторого предельного значения.

Образование пар электрон-позитрон играет определяющую роль в поглощении веществом гамма-квантов высокой энергии, а также, совместно с тормозным излучением (См. Тормозное излучение), в возникновении так называемых электронно-фотонных ливней в космических лучах.

Аннигиляция и рождение пар других частиц. Если энергия фотона очень велика, то он может породить любую пару частица-античастица, например пару мюонов (См. Мюоны). Пары сильно взаимодействующих частиц, например пара протон-антипротон, образуются при соударениях очень быстрых протонов с нуклонами (т. е. протонами и нейтронами) атомных ядер.

При аннигиляции нуклонов с антинуклонами также гораздо чаще возникают не гамма-кванты, а "массивные" частицы, появление которых не запрещено законами сохранения: как правило, аннигиляция таких пар происходит с образованием четырёх-пяти пимезонов.

Процессы А. и р. п. нашли применение в научных исследованиях. Так, распределение возникающих при аннигиляции фотонов по их углам разлёта позволяет найти распределение электронов в металлах по скоростям (так как вероятность аннигиляции позитрона в веществе сильно зависит от относит. скорости позитрона н участвующего в тепловом движении электрона). Знание этого распределения необходимо, например, для расчёта удельной теплоёмкости металлов при очень низких температурах. Другой пример: по рождению электрон-позитронных пар можно получать сведения об образующихся в реакции фотонах большой энергии. Фотон, как и всякую другую незаряженную частицу, нельзя наблюдать непосредственно, так как он не оставляет видимого следа в детекторах частиц, таких, как камера Вильсона, Пузырьковая камера, Ядерная фотографическая эмульсия и др., и о его энергии, импульсе, а также о самом факте его образования можно узнать только по рожденной им паре (а для фотона меньшей энергии - по комптонопскому электрону отдачи, см. Комптон-эффект (См. Комптона эффект)).

Лит.: см. при ст. Античастицы.

О. И. Завьялов.

Фотография пары электрон-позитрон, образованной в камере Вильсона гамма-квантом на ядре криптона. Камера помещена в магнитное поле, которое отклоняет отрицательно заряженный электрон и положительно заряженный позитрон в противоположные стороны.

Квазичастица         
СОВМЕСТНОЕ ПОВЕДЕНИЕ МНОЖЕСТВА ЧАСТИЦ В СЛОЖНОЙ НА МИКРОСКОПИЧЕСКОМ УРОВНЕ СИСТЕМЕ, ВЫГЛЯДЯЩЕЕ КАК ОДНА «ЧАСТИЦА», ДВИЖУЩАЯСЯ В ВАКУУМЕ
Квазичастицы; Элементарное возбуждение
Квазичасти́ца (от  «наподобие», «нечто вроде») — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких как твёрдые тела и квантовые жидкости.
Наночастица         
Наночастицы; Наномасштабные частицы
Наночастица () — изолированный твёрдофазный объект, имеющий отчётливо выраженную границу с окружающей средой, размеры которого во всех трёх измерениях составляют от 1 до 100 нм.
КВАЗИЧАСТИЦЫ         
СОВМЕСТНОЕ ПОВЕДЕНИЕ МНОЖЕСТВА ЧАСТИЦ В СЛОЖНОЙ НА МИКРОСКОПИЧЕСКОМ УРОВНЕ СИСТЕМЕ, ВЫГЛЯДЯЩЕЕ КАК ОДНА «ЧАСТИЦА», ДВИЖУЩАЯСЯ В ВАКУУМЕ
Квазичастицы; Элементарное возбуждение
понятие квантовой теории систем многих взаимодействующих частиц (кристаллов, жидкостей, плазмы, ядерной материи и т. д.). Квазичастицы представляют собой кванты элементарных возбуждений системы. Подобно обычным частицам, квазичастицы могут быть охарактеризованы энергией, импульсом (квазиимпульсом), спином и т. д. Приближенно совокупность взаимодействующих между собой частиц оказывается аналогичной по свойствам идеальному газу квазичастиц. Существуют квазичастицы-бозоны (кванты звуковых волн - фононы, спиновых волн - магноны и др.) и квазичастицы-фермионы (электроны проводимости и дырки).
МИКРОЧАСТИЦЫ      
частицы очень малой массы; к ним относятся элементарные частицы, атомные ядра, атомы, молекулы.

Википедия

Античастицы

Античасти́ца — частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, отличающаяся от неё знаками всех других характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды, барионное и лептонное квантовые числа).

Само определение того, что называть «частицей» в паре частица-античастица, в значительной мере условно. Однако при данном выборе «частицы» её античастица определяется однозначно. Сохранение барионного числа в процессах слабого взаимодействия позволяет по цепочке распадов барионов определить «частицу» в любой паре барион-антибарион. Выбор электрона как «частицы» в паре электрон-позитрон фиксирует (вследствие сохранения лептонного числа в процессах слабого взаимодействия) определение состояния «частицы» в паре электронных нейтрино-антинейтрино. Переходы между лептонами различных поколений (типа μ e {\displaystyle \mu \rightarrow e} ) не наблюдались, так что определение «частицы» в каждом поколении лептонов, вообще говоря, может быть произведено независимо. Обычно по аналогии с электроном «частицами» называют отрицательно заряженные лептоны, что при сохранении лептонного числа определяет соответствующие нейтрино и антинейтрино. Для бозонов понятие «частица» может фиксироваться определением, например, гиперзаряда.

Что такое АНТИЧАСТИЦЫ - определение